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THE MODAL DECOMPOSITION OF AN IMPEDANCE TUBE

1. INTRODUCTION

The dynamic response of an enclosed acoustic system is determined by both the

governing differential equations and associated boundary conditions. The problem was

first addressed as early as 1878 by Raleigh when he modeled one-dimensional acoustic

response. More current research has treated the response of hard-walled ducts with

idealized reflecting and/or nonreflecting terminations to point source excitation (Snowdon,

1971; Doak, 1973a; Swinbanks, 1973; Trinder and Nelson, 1983; Tichy et al., 1984).

Ducts with idealized totally reflective boundary conditions result in self-adjoint

differential operators that yield a standing wave model with mutually orthogonal modes.

However, models of ducts with totally absorbent (nonreflecting) boundary conditions do

not resonate, and wave propagation rwodels are frequently used. Actual acoustic systems

have nonidealized, partially reflective boundary conditions, yielding some combination of

propagating and standing wave components in their acoustic pressure response (Davis et

al., 1954; Spiekermann and Radcliffe, 1988a, 1988b).

The available analytical techniques, however, do not provide for the possibility that

the acoustic response could be a combination of standing and propagating waves, nor do

they consider the effect of partially absorptive boundary conditions on duct models. The

partially absorptive boundary condition produces a nonself-adjoint differential operator.

Thus, traditional methods of orthogonal mode shape discretization for this class of

problems cannot be applied because the eigenfunctions are not orthogonal with the

conventional inner product over the domain of the operator, and the conventional

eigenfunction inner product does not decouple the state equations of the model.

1
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This paper develops an infinite order, diagonal, state-space model of a duct with a

partially absorptive boundary condition by deriving a new method to orthogonalize the state

equations. Mathematically, the model of duct pressure at some location in the spatial

domain divided by the forcing function is a complex transfer function obtained by

manipulating the nonself-adjoint differential operator of the system. The model is

experimentally verified for several different test configurations. As described at the end of

this paper, the model also provides a method for evaluating duct endpoint impedances

based on the system eigenvalues.

2. SYSTEM MODEL

The system model is a one-dimensional, hard-walled duct excited by either a

pressure input at one end or a particle velocity input into the spatial domain. The boundary

conditions are a pressure release boundary condition at one end and a generalized

impedance boundary condition at the other. This partially reflective boundary allows the

acoustic response model to include standing and propagating wave responses

simultaneously. This occurs when of some energy in the duct is dissipated out the end,

while the remainder is reflected back into the duct

The forced linear second-order wave equation for modeling particle displacement in

a one-dimensional hard-walled duct is (Seto, 1971; Doak, 1973b; Morse and Ingard, 1968)

2 U(Xt) c2 092u(x,t) = P(t)6(x) +'dIV(t)R(xx- x), (1)

where u(xt) is the particle displacement (m), c is the acoustic wave speed (m/s), x is the

spatial location (m), t is time (s), p is the density of the medium (kg/m3 ), P(t) is the

pressure excitation at x = 0 (N/m2), V(t) is the particle velocity excitation at x = x. (m/s),

8(x) is the Dirac delta function (1/m), and R(x - x.) is the rectangular function

(dimensionless). The rectangular function is defined as unity (1) for x = 0 to x = x, and as

zero (0) everywhere else. The left-hand side of equation (1) represents the dynamics of the

duct and the right-hand side represents the forcing functions acting on the duct. The wave

2
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equation assumes an adiabatic system, no mean flow in the duct, a uniform duct cross

section, and negligible air viscosity effects. The hard-wall assumption models the duct as

having no dissipation on the domain. The one-dimensional assumption requires the

diameter of the duct to be small compared with its length, which is valid when f <

0.586(c/d), where f is the frequency (Hz) and d is the diameter of the duct (m) (Annual

Book of ASTM Standards, 1985a, 1985b)

The boundary condition at the location x = L is a generalized condition that

corresponds to the acoustic impedance at the end of the duct. It is expressed as the

relationship between the spatial gradient and the time gradient of particle displacement

(Seto, 1971; Pierce, 1981) as follows:

= 
(2)

where K is the acoustic impedance of the termination end (dimensionless). For a steady-

state response in the duct, K can be a complex number. For a transient response, K is a

real number. Implicit in equation (2) is the analogy with electrical systems, where acoustic

velocity corresponds to current and duct pressure to voltage. When Re(K) equals zero or

infinity, the termination end of the duct reflects all the acoustic energy, and the response is

composed of standing waves only. When K = 1 + Oi, the termination end of the duct

absorbs all the acoustic energy, and the response is composed of propagating waves. All

other values of K yield some mixed combination of propagating and standing wave

response. In general, the reflection coefficient (1- K) /(1 + K) gives the relative

magnitude of the reflected pressure wave off the termination end. The real part of K

(acoustic resistance) is associated with energy dissipation and is sometimes called a loss

coefficient because it is a measure of the amount of energy leaving the duct The imaginary

part of K (acoustic reactance) is associated with conservative fluid compliance and/or inertia

effects.

The duct end at x = 0 is modeled as a pressure release boundary condition:

3
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Ot) =0. (3)
dx

At low frequencies, this equation corresponds to an open duct end or one with an excitation

speaker. The acoustic pressure of the system is related to the spatial gradient of the particle
'4

displacement by (Seto, 197 1)

P(xt) = -pc 2 u(x,t) (4)

Equations (1)-(4) represent a mathematical model of the duct for one-dimensional motion.

An impedance tube with two excitation sources is shown in Figure 1, although only one

source is typically used for an experiment.

L

xs

I I DuctAcoustic

End Impedance
Excitation K at the
Speaker Domain Termination

Excitation End

Speaker

Figure 1. A Typical Impedance Tube With Excitation Sources
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3. A DECOUPLED SOLUTION

A decoupled set of ordinary differential equations in state-space form that model the

dynamic response is now developed. These equations will incorporate the boundary

conditions (equations (2) and (3)) as well as the initial conditions in the duct. The

eigenvalues and eigenfunctions of the model are found by applying separation of variables

to equations (2) and (3) and to the homogeneous version of equation (1).

Separation of variables assumes that each term of the solution is a product of a

function in the spatial domain multiplied by a function in the time domain:

u(x,t) = X(x)T(t) . (5)

Substituting equation (5) into the homogeneous version of equation (1) produces two

independent ordinary differential equations, each with complex-valued separation constant

A; namely,

d2 X - = 0 (6)

and

d2 T(t) _ c2A2T(-) -0. (7)

The separation constant A = 0 is a special case, where X(x) = T(t) = a constant to satisfy

equations (2) and (3). Because. the pressure field is proportional to the spatial derivative of

the particle displacement, the separation constant A = 0 (and its associated particle

displacement term) will not contribute to the pressure field. The spatial ordinary differential

equation (equation (6)) is solved for A * 0 with the boundary condition given in equation

(3):

X(x)- = e + e-X . (8)

The time-dependent ordinary differential equation (equation (7)) yields the following

general solution:

5
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T(t) = AeC•t + Be-CA. (9)

Applying the boundary condition of equation (2) to equations (8) and (9) results in B = 0

and the integer-indexed separation constants

1 =-logee(--) L n= ...- 3,-2,-, 0, 1. 2, 3,.... (10)

where i is equal to the square root of -1 and A has units of inverse meters. Inserting the

indexed separation constants into equation (8) produces the complex-valued spatial

eigenfunctions

ip,(x)= eXnx +e -zX (11)

The eigenvalues of the system are equal to the separation constant multiplied by the wave

speed as follows:

An = cA,, (12)

where An has units of radians/second. A plot of the eigenvalues in the complex plane is

shown in Figure 2. The indexed eigenvalues are equally spaced and parallel to the

imaginary axis. The n = 2 eigenfunction is shown in Figure 3 for acoustic impedances of

K = 0.5 + Oi and K = 0 + Oi. Unless the acoustic impedance K is zero or infinity, the

eigenfunctions are not mutually orthogonal on [0,L], conventional modal analysis of the

forced wave equation is not possible, and the time response cannot be found.

6
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Imaginary

X ~ ~ i Iargl-1+I

2k~l+ K L

+ K L

x~ [Tc arg(I-)]Z, 5

Figure 2. Syte Realaus~fr ostn
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-1000-
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Distance, x

Figure 3. Second Eigenfunction With End Impedances of K =0.5 + Oi and K = 0 + Oi
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As discussed earlier, traditional methods of orthogonal mode shapes cannot be

applied here because of the nonself-adjoint operator. However, by extending the problem

definition onto a virtual duct and then redefining the equations over [-LL], the time and

space modes will decouple and a solution to the problem can be found. This technique is

explained next.

The particle displacement (or solution) to the forced wave equation is now written

as a series solution plus a time-dependent term arising from the A = 0 separation constant.

This expression is

u(x,) 0 =OGt)+ a.a(t) q),n(x) , (13)

where G(t) and an(t) are generalized coordinates (state variables) and q),(x) represents the

spatial eigenfunctions defined in equation (11). The coordinate G(t) will not contribute to

the pressure response in the duct because the pressure response is only dependent on the

spatial partial derivative. Derivation of a solution that decouples the time and space modes

requires the time derivative (velocity) of the particle displacement to be writtan in two

different forms. The first form is the time derivative of equation (13) and yields

xtO =--dG(t) + * 4a(t) ((14)
dt Y tInx

The second, developed by using equations (5), (9), and (12), is written as

dU(x't____) = YAn an~t W ,a(W) (15)

Equating equations (14) and (15) produces

dGt_ + o Fdan(t)_- AnanW9)n q)l(x)= 0. (16)

dt n== , L t dI

The assumption is now made that differentiation will distribute over the summation, which

will be validated by decoupled space and time modes. The forced wave equation (equation

(1)) is rewritten with the equations (13)-(16). The second partial time derivative is found

9
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from the time derivative of equation (15), and the second partial spatial derivative is found

from the second spatial derivative of equation (13). Inserting these derivatives into the left-

"hand side of equation (1) yields

Y . [4rd((t)- Ana.(t)] A1 C, P(t)6(x) oV(-) x_ = An-n t)- s). (17)
n=L d p at

Equation (16) is now differentiated with respect to x and multiplied by the wave

speed c. The result is then added to equation (17) to form

j [as(t) - Anan(t)] An2e"fx = P(t)8(x) + dr() R(x x.) x e[0,LJ U 8)
=. dt p

and is subtracted from equation (17) to give

Y [dan(t) _ Ana. (t)] An2e_ nx P(t)=(x) R(x x) e[0,L (19)
n=-0- dt = . +---, POL.(9

The interval of equation (19) is changed from [0,L] to [-L,0] by substitution of -x for x,

producing

0; [ da, (t) _ A~a(t] A.2~n = P(t)8(-x) + dwo R(-x -x.) , x e[-LO]. (20)

Combining equations (18) and (20) into a single equation and breaking the exponential into

terms that contain the index n and terms that do not contain the index n results in
go -in=x

V [Wa ,,t) -Anan(t)J 2Ae -L

1=-c

:-'loge (I-K P(t)(-x) "V(t)
L xP X e-L,0],

(21)

e lge + xx)] xe[OL1

10
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Tlhe exponential function eo"'u// (where m is an integer) is now multiplied on both sides

of equation (21), and the resulting equation is integrated from -L to L. The left-hand side

of the equation can be expressed as

L dan (t)

-LI dt Ana,(t)J 2AR e L e L dx

-L

L 0- AnaN(t)] 4AnL , n-=-m,

(22)

0 , n*m.

Use of the reflection property of integrals and the bound of 0 < xs < L results in the right-

hand side of equation (21) becoming

0 e-•Lnx[P(t)8(-X) +/(t) ]x +
i L - +--ý;7R(-x - +s
-L I

L e-nP(t___(x) +NOV) R(x -xS)] dx =
o L

2P(t) + I d~n(xs) V(t) (23)p () dx dt

Equations (22) and (23) can be equated (for n = m) to form ordinary differential equations

for the generalized coordinates a. as

da(_AnN(t) = P(t) + 1 dgn,(x,) dV(t) (24)

dt 2AnLp 4AnLV2 dx dt

An explicit solution to equation (24) cannot be found until a time-dependent forcing

function has been specified.

The initial conditions of the generalized coordinates can be determined from the

initial conditions of the duct with a method similar to the above derivation. This equation is

11
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L L
a( 1 r (xO0) o + I j (xO) dn(x)25)

(=4ARL 0 ... =4A-L 0 dx dx

where du(x,0) I dt is the initial velocity of the acoustic medium (m/s) and du(x,0) I dx is

the initial acoustic strain in the duct (dimensionless), which is proportional to initial

pressure (equation (4)).

4. ACCURACY OF TRUNCATED SOLUTION

The exact series solution must be truncated to a finite number of terms. The effect

of this truncation on steady-state pressure excitation (at x = 0) will now be examined since

a closed-form solution already exists for this case. The exact steady-state series solution

for pressure excitation at x = 0 is found by solving equation (24) using P(t) = POei00

(where tv = frequency in radians/second) and V(t) = 0 and then inserting the resulting

generalized coordinates an(t) into equation (4). The transfer function between pressum in

the domain P(xt) and the amplitude of the excitation P0 is

P(x,t) -c[ eAnx -e-nX" e (26)
P0  2L (I--An)

which is trucated to a 2N+ term series by

Nx) -c enX - e-Anx 1 .P(x2•• =• - e ' (27)
P0  2L [ =_ o- A) J

The exact steady-state response for the system described in equations (1)-(4) has been

independently calculated (Spiekermann and Radcliffe, 1988a) for harmonic pressure

excitation at x = 0 in continuous closed-form solution as

iA-L-X) -i W(L-x)
P(x,t) (K+ 1)e c + (K- 1)e c ei (28)

PO = iE -L -i -L "
(K+l)e c + (K-l)e c

This exact steady-state response model is only valid for the special case of harmonic

pressure excitation at x = 0. It cannot model the velocity excitation in the domain, nor can

12
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it model transient responses. It is used here only for comparison with the more general

result of equation (26).

Quantitative information on the accuracy of a truncated, steady-state, series solution

(equation (27)) is found here by c'•mparing it to an exact, steady-state frequency response

(equation (28)). Figure 4 shows the frequency response of a 1.524-m (5-ft) duct at a

location of x = 0.4267 m (1.4 ft) from pressure excitation at x = 0. The impedance at x = L

is K = 0.3 + 0.2i, and a truncated series model with I Iterms is used to approximate the

exact solution. The solid line is the truncated steady-state series solution (equation (27))

and the dashed line is the continuous solution (equation (28)). The mean relative error up

to the fifth duct resonance is only 3.2 percent (-30 dB). Numerical simulations suggest that

the state-space model requires one state to model zero frequency response plus two states to

model each duct resonance. The model yields acceptable accuracy up to the highest duct

resonance modeled.

13
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4-

Magnitude 1Continuous SolutionMama (Equation (28))

3 -,
IPol

(dimensionless)

2-

% IN .

* I e

I 1 Term Series Solution (Equation (27))0--

0 200 400 600 800
Frequency (Hz)

200-

Phase
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(degr) ee

0-

-100-

-20 0 1 .1 . .. . .
0 200 400 600 800

Frequency (Hz)

Figure 4. Theoretical Frequency Responses With Acoustic Impedance K = 0.3 + 0.2i
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S. MODEL VALIDATION EXPERIMENTS

The stawe-space model developed above is experimentally verified for four different

test cases: steady-state pressure excitation with frequency-invariant (constant) acoustic

impedance, steady-state velocity excitation with frequency-invariant acoustic impedance,

steady-state pressure excitation with frequency-dependent acoustic impedance, and

transient pressure excitation with constant impedance. In all the experiments, the

impedance at the end of the duct was calculated from the experimental system transfer

functions. This impedance measurement technique is described next.

5.1. STEADY-STATE PRESSURE EXCITATION WITH FREQUENCY-

INVARIANT ACOUSTIC IMPEDANCE

The first experiment involved steady-state pressure excitation at x = 0 with a

constant, frequency-invariant acoustic impedance at the termination end. The impedance

was produced by inserting a flat piece of packing foam that had a nearly constant

impedance at all frequencies of interest (approximately K = 0.285 + 0.079i from zero to

400 Hz). The theoretical response of the system is given by equation (27). The

experiment used a 76-mm (3-in.) circular PVC schedule-40 duct that was 2.60 m (8.52 ft)

long driven by a 254-mm (10-in.) diameter speaker (Realistic 40-1331B). Input pressure

of the speaker was measured at its exit plane with a Bruel and Kjaer Type 4166 half-inch

microphone attached to a Hewlett Packard 5423A digital signal analyzer. At a location of x

= 0.792 m (2.60 ft) from the speaker, the response of the tube was measured with another

Bruel and Kjaer Type 4166 half-inch microphone. The output of the response

measurement microphone was then connected to the signal analyzer (Figure 5). Both

microphones were calibrated using a Bruel and Kjaer Type 4230 Sound Level Calibrator.

The results of the experiment are shown in Figure 6. The measured responses are marked

by X's and the theoretical response by a solid line. There is a high degree of accuracy in

the magnitude and phase data. The disagreement between the experimental data and the

theory is possibly due to a slight nonlinearity of the packing foam impedance.

15
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L =2.60m m -

* Duct

Input Response Acoustic Impedance
Reference Measurement K = 0.285 + 0.079i at
Microphone Microphone the Termination End

atx= 0.792 m

Random Fast Frequency P(o)Amplifier 9""-Noise Fourier •-
T=Response p0Generator Transform

Figure 5. Laboratory Configuration for Furst Experiment
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Figure 6. Theoretical and Experimental Frequency Responses for First Test
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5.2. STEADY-STATE VELOCITY EXCITATION WITH FREQUENCY-

INVARIANT ACOUSTIC IMPEDANCE

*The experiment was rerun with velocity excitation in the domain. The truncated

steady-state transfer function of the system with a velocity excitation of V() = VOe'0 at x.

is

r [e-Z vnX nAx) ei. (29)

V = 4L [ - (i - J

A Realistic 102-mm (4-in.) speaker was located in the wall of the duct atx = 1.58 m (5.17

ft) with a schedule-40 test tee. The input signal was measured with a Bruel and Kjaer Type

3544 helium neon laser velocity measurement system attached to the signal analyzer. The

test tee had a Plexiglas window inserted in its side so that the laser could illuminate the

speaker cone face in order to measure speaker velocity. The length of the duct tested was

4.42 m (14.5 ft), and the response was measured at x = 0.762 m (2.50 ft). The foam used

in the first experiment was again used in this one. A diagram of the laboratory

configuration is shown in Figure 7; the results of the experiment are shown in Figure 8.

The solid line denotes the theory (equation (29)) and the X's show the experimental data.

18
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L =4.42 m

•---xs =1.58 m----

X5 -. 8 Random
x Amplifier Noise

Generator

Duct

Open End Response Acoustic Impedance
K-0+Oi Measurement K = 0.285 + 0.079i atMicrophone• LA thLTrmntinrn

at x = 0.762 m Velocimeter the Termination End

Fast Frequency P(M)
Fourier RVTransformRepse ,0

Figure 7. Laboratory Configuration for Second Experiment
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Figure 8. Theoretical and Experimental Frequency Responses for Second Test
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5.3. STEADY-STATE PRESSURE EXCITATION WITH FREQUENCY-

DEPENDENT ACOUSTIC IMPEDANCE

SThe acoustic impedance discussed here is given in equation (2), where it is assumed

that acoustic impedance is frequency invariant. For some termination ends, the impedance

is frequency dependent. For these systems, equation (2) is written as

duL( ) ( 00 =- .t) (30)
dx C dt

Although the separation of variables method is for a constant K, the termination ends where

K is a function of frequency can be approximated by the expression

d(t - K (j1 (Lt) (1

With the relationship in equation (31), the state-space model derived above can be used to

approximate systems with frequency-dependent terminations, as shown in the next

experiment.

The third test involved pressure excitation at x = 0 with a nonconstant acoustic

impedance in the termination end. The nonconstant termination was produced by placing a

hemisphere of foam with a diameter equal to the duct diameter in the end of the duct at x =

L. The resulting acoustic wave was affected by the presence and the shape of the material,

which produced a nonconstant acoustic impedance. The impedance values listed in Table I

were found by obtaining the frequency response of the system from zero to 800 Hz and

then by solving the inverse problem for K at each duct eigenvalue (described below). The

length of the duct was 1.59 m (5.22 ft), and the response was measured at x = 1.09 m

(3.56 ft). The experimental setup (with different physical dimensions) was the same one as

shown in Figure 5. The state-space model was assembled with the individual acoustic

impedance measurements of K at each resonant frequency rather than at a single constant

value. The eigenvalues of the system are nonconjugate complex values since K is

complex. A comparison of the theoretical transfer function and the experiment is shown in
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Figure 9. This figure demonstrates that for a nonconstant impedance end the linear state-

space model is reasonably accurate and can predict resonant peak locations as well as

Lystem phase angles. The errors tend to be minimized near the natural frequencies but

maximized between them. ThiF result occurred because the modal impedances K. were

measured at the natural frequencies. The model does not account for varying values of the

acoustic impedance between the modes.

Table 1. Calculated Acoustic Impedance.

Eigenvalue (n) f. (Hz) Re (Kn) Im (K.)

1 104.8 0.599 0.066

2 213.8 0.585 0.054
3 314.6 0.594 0.206

4 424.2 0.522 0.198

5 533.5 0.491 0.182
6 645.0 0.508 0.104

7 754.6 0.459 0.081
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Figure 9. Theoretical and Experimental Frequency Responses for Third Test
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5.4. TRANSIENT PRESSURE EXCITATION WITH CONSTANT

ACOUSTIC IMPEDANCE

The transient response of the system was next verified. The experiment was

initiated by attaching a pulse generator to the amplifier in order to excite the speaker. The

electrical impulse produced was converted to one cycle of sine wave acoustic energy at

approximately 500 Hz (Figure 10). The system input pressure and response pressure were

measured by Bruel and Kjaer Type 4166 half-inch microphones attached to an Apple

Macintosh lix computer running National Instruments Labview software and an NB-MIO-

16L analog-to-digital converter. The length of the duct in this test was 2.44 m (8.00 ft),

and the response was measured at x = 0.792 m (2.60 ft). The packing foam used in the

first and second experiments was also used here to provide a nonzero acoustic impedance at

the end of the duct. The measured time domain experimental data were compan.t to the

theoretical model response. Only the real part of K was used in the theoretical formulation.

Figure 11 is a plot of the experimental data and theoretical state-space model. The

solid line shows the experimental data and the dashed line depicts the theoretical modeL

The theoretical model response was computed using a fifth-order Adams' integration

method with 51 states. The forcing function in the Adams' integration routine was the

measured system input at x = 0. The integration step size was At = 0.000035 seconds,

which matched the Labview sampling rate of 28571 Hz. There is an excellent match

between the theoretical model and experimental data from t = 0 to t = 0.015 seconds. After

that, the experimental data and theoretical prediction deviate because the propagating

pressure pulse is reflected off the now inactive speaker and is affected by its impedance.

The theoretical model does not account for impedance at the inactive speaker (zero

velocity); however, Figures 6, 8, and 9 illustrate that an active speaker used in this

experiment has little effect on the impedance at the source end (x = 0) for the test

frequencies used here.
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Figure 11. Transient Response of Duct at x = 0.792 m
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6. ACOUSTIC IMPEDANCE MEASUREMENT

The acoustic impedance K of the termination end can be determined at each duct

resonance from the eigenvalue corresponding to that resonance. This computation assumes

that the eigenvalues of the system are known. Measuring these duct system eigenvalues is

discussed below. Directly solving for K in terms of A is very difficult; therefore an

intermediate variable P3 is introduced to simplify the acoustic impedance computation. The

variable P. is related to the nth eigenvalue A. from equations (10) and (12) as

Re(A,)+ iIm(An) = -loge[SPn)+ iIm(Pn)]- -xc, (32)

where Re( ) denotes the real part, Im( ) denotes the imaginary part, and the subscript "n"

denotes the nth term. Equation (32) is now divided into two parts, one equating the real

coefficients and the other equating the imaginary coefficients. The complex logarithm on

the right-hand side is rewritten as

loge[Re(,8n)+ iIm(,p,)J = 1oge•,+ iarg(fls), (33)

where 0.1 is the magnitude of B. and arg(f,,) is the argument of B., i.e., the arctangent

of [Im(P.)/ Re(P,)].

The intermediate variable P. is now solved for in terms of the real and imaginary

parts of the eigenvalues. The real part of P. is

2
[ex4L (A)1

4 C
Re(2f" (2l_).d J +.2 (34a)

where

d = Im(A.) -lCc (34b)
L

The sign of the right-hand side of equation (34a) is determined by
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rgn fA+.. I if 0:5 N:5O.25(3a
t- { if 0.255 JAI• 0.50'

where

(35b)

If the value of A is less than -0.5 or greater than 0.5, the eigenvalue index n is incorrect and

corresponds to an eigenvalue other than the nth one. The value of n must then be changed

to produce a A between -0.5 and 0.5, which will correspond to the correct eigenvalue

index. Once Re(P.) is found, Im(fl.) can be solved using

Im(P,) = Re(P,)tan(3 Ad&) . (36)

where Re(6.) is given in equation (34).

Use of equations (10) and (32) now allows the term (1-K)I(l+K) to be equated to

the intermediate variable fiP as

Re(P) + i•(f)=- 1 +-Re(K) -iIm(K.) (37)

1 +Re(K,) + im(K.)'

where Re(K.) is the real part of K and Im(K.) is the imaginary part of K corresponding to

the nth eigenvalue. Breaking equation (37) into two equations and solving for K, as a

function of &i yield the acoustic impedance as

Re(K I-Re(.)+ [im(=f (38)
R [Re(P.) +If +[Im(P.)f

and

Im(K.) (39)m~ln
[Re(pn) + 112 + [Im(pln)]2.(9

Acoustic impedance measurement K. represents the acoustic impedance at the nth resonant

frequency.

27



TR 10,675

Because steady-state eigenvalue measurements are amplitude dominated rather than

ph~se dominated, the impedance measurement technique developed here does not require

phase-matched microphones, nor does it require compensation for phase-mismatched

microphones. Phase mismatch in the microphones is neglected since the measurements are

made at a duct resonant frequency; Le., the measurements are made when the system phase

angles are changing rapidly through 180 degrees. Microphones operating under 500 Hz

rarely have a phase error greater than 5 degrees (Bruel and Kjaer, 1982). The distance

between the microphones is also not critical because the duct eigenvalues are independent

of measurement location, unlike in previous methods (Seybert and Ross, 1977; Chung and

Blaser, 1980a, 1980b) where microphone spacing is a required parameter in the analysis

and phase-matched microphones (or a compensation function) are necessary because wave

propagation across the microphones is detected. The computation of acoustic impedance

from duct eigenvalues is a closed-form solution. Thus, errors in the method developed

here are only a function of errors associated with measuring the eigenvalues of the duct, the

duct length, and the speed of sound. In addition, because this method uses the input

microphone as an amplitude reference, the excitation speaker does not require a flat

response around the frequency of interest since the response is normalized by the pressure

input reference when the fast Fourier transform is computed.

The 5423A Structural Dynamics Analyzer used in this research is capable of

providing a number of real-time analyses, including the determination of the transfer

function (frequency response) of a system and calculation of the corresponding

eigenvalues. The analyzer accomplishes this by curve fitting a single-mode vibration model

(two first-order states) to the experimental data. Included in the single-mode vibration

model is compensation for other modes, which may be overlapping at that particular

fiequency. During the curve-fitting process, the real and imaginary parts of the eigenvalues

are calculated. Although it is beyond the scope of this paper to describe the process, modal

parameter extraction from the transfer function of the system is a common function of
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commercial fast Fourier analyzers (Hewlett Packard, 1979; Structural Dynamics Research

Corporation, 1983).

7. CONCLUSIONS

The modal decomposition of an impedance tube was theoretically demonstrated and

experimentally verified. The new model incorporates pressure at the end or velocity input

in the spatial domain, as well as unknown impedance at the termination end. The model is

valid for both steady-state and transient responses. Several experiments have shown that

the model is extremely accurate. The acoustic impedance at the termination end could be

determined by using the eigenvalues from the steady-state experiments.
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